A Molecular Diagnostic for Phosphorus Deficiency in Potatoes

Philip J. White

John P. Hammond, Martin R. Broadley, Helen Bowen, Rory Hayden & Will Spracklen

(Warwick, Nottingham, SCRI)

IPNC XVI, Sacramento, 28th August, 2009
Use fertilisers wisely: Reduce & recycle
Soil and Tissue Analyses to Identify Crop P-fertiliser Requirements

Soil analysis

- Used for fertiliser recommendations
- Several methods - no consensus
- Influenced by soil type and water status

Plant analysis

- Informs on plant content
- Tissues differ in P content
- Tissue P does not reflect P sufficiency

Another Alternative: Plant Physiological State
Molecular Diagnostics for Crop P Status

In nature, phosphate is scarce. Plants acclimate to P starvation through changes in gene expression. If you monitor gene expression, you can identify when a plant requires P.
Acclimatory Responses to P Starvation

Increased P acquisition
- Increase high-affinity P transport proteins
- Increased root:shoot ratio
- Acceleration of lateral root growth and root hair production
- Exudation of organic acids, RNases, and phosphatases

Internal P Economy
- Mobilise P reserves from the vacuole
- Reduced P use in energy metabolism
- Reduced transcription (RNA abundance)
- Replace P in phospholipids

Acclimatory Responses to P Starvation

Increased P acquisition
- Increase high-affinity P transport proteins
- Increased root:shoot ratio
- Acceleration of lateral root growth and root hair production
- Exudation of organic acids, RNases, and phosphatases

Internal P Economy
- Mobilise P reserves from the vacuole
- Reduced P use in energy metabolism
- Reduced transcription (RNA abundance)
- Replace P in phospholipids

Our First Molecular Diagnostic: “Smart” Plants

Plants that tell us their physiological status

Hammond et al. (2003) Plant Physiology 132, 578-596
Our First Molecular Diagnostic: “Smart” Plants

Plants that tell us their physiological status

Low Nutrient

Promoter 1.6 kb from SQD1 gene

GUS (β-glucuronidase)
GFP (m-gfp-5-ER)

Nutrient Application

Hammond et al. (2003) Plant Physiology 132, 578-596
Smart Arabidopsis Plants

Why settle for just one gene?
Diagnostic Transcriptional Microarray

Leaf transcriptional profile from a P-deficient plant
General Experimental Design

Grow Plants → Remove P-source → Isolate RNA → Probe Microarray → Identify Regulated Genes → Physiological Insight → Targets for Breeding P-Efficient Crops → Indicators of Early Phosphorus Deficiency

- Identify Regulated Genes
Transcriptional Responses to P Starvation

Potato

Brassica

White lupin

Rice

Tomato
Effect of P-withdrawal and P-resupply on Shoot Mass of Hydroponically-Grown Potato

Effect on shoot mass after 13 days
Effect of P-withdrawal and P-resupply on Leaf-P in Hydroponically-Grown Potato

Effect on leaf P-concentration before 7 days
Genes most significantly up-regulated in the leaves of potato seven days after the withdrawal of phosphate from the nutrient solution

<table>
<thead>
<tr>
<th>TIGR TC</th>
<th>Fold change</th>
<th>SE</th>
<th>P value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC104627</td>
<td>6.6</td>
<td>1.4</td>
<td>0.0002</td>
<td>Myc transcription factor</td>
</tr>
<tr>
<td>TC105454</td>
<td>15.4</td>
<td>5.2</td>
<td>0.0002</td>
<td>Glycerophosphoryl diester phosphodiesterase</td>
</tr>
<tr>
<td>TC98792</td>
<td>11.9</td>
<td>4.8</td>
<td>0.0007</td>
<td>SPX domain - similar to PHO1</td>
</tr>
<tr>
<td>TC109029</td>
<td>7.5</td>
<td>2.4</td>
<td>0.0009</td>
<td>SPX domain - similar to PHO1</td>
</tr>
<tr>
<td>TC103140</td>
<td>5.3</td>
<td>1.4</td>
<td>0.0010</td>
<td>Osmotin-like protein</td>
</tr>
<tr>
<td>TC98995</td>
<td>3.8</td>
<td>0.9</td>
<td>0.0013</td>
<td>SPX domain - similar to PHO1</td>
</tr>
<tr>
<td>TC109579</td>
<td>4.7</td>
<td>1.3</td>
<td>0.0015</td>
<td>DNA binding protein</td>
</tr>
<tr>
<td>TC94474</td>
<td>4.3</td>
<td>1.1</td>
<td>0.0019</td>
<td>DNA binding protein</td>
</tr>
<tr>
<td>TC93907</td>
<td>2.2</td>
<td>0.3</td>
<td>0.0024</td>
<td>Myb transcription factor</td>
</tr>
<tr>
<td>TC97859</td>
<td>2.6</td>
<td>0.5</td>
<td>0.0025</td>
<td>Inorganic phosphate transporter 1</td>
</tr>
<tr>
<td>TC101402</td>
<td>2.4</td>
<td>0.4</td>
<td>0.0027</td>
<td>Zinc-finger protein</td>
</tr>
</tbody>
</table>

Hammond et al., unpublished data
UDP-D-Glucose → SQD1 → UDP-sulfoquinovose → SQD2 → sulfoquinovosyldiacylglycerol

1,2-diacylglycerol → MGDG → mono-β-D-galactosyldiacylglycerol → DGDG1 → α-D-galactosyl-β-D-galactosyldiacylglycerol

Phospholipase D

Patatin like phospholipase

Glycerophosphodiester phosphodiesterase

1-acyl-sn-glycerophosphocholine → L-phosphatidate + choline

sn-glycerophosphocholine → Glycerol-3-phosphate + choline
Expression of 200 genes should predict P status
Genes whose Expression Discriminates between P-replete and P-deficient Potatoes

<table>
<thead>
<tr>
<th>Microarray Probe ID</th>
<th>Power</th>
<th>Genbank ID</th>
<th>Description</th>
<th>StGI ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>STMJA76TV</td>
<td>0.555</td>
<td>ABE82661</td>
<td>Tyrosine protein kinase</td>
<td>BQ516953</td>
</tr>
<tr>
<td>STMEU15TV</td>
<td>0.724</td>
<td>NP_565730</td>
<td>poly(ADP-ribose) glycohydrolase</td>
<td>BQ120909</td>
</tr>
<tr>
<td>PotatoF0996.scf</td>
<td>0.579</td>
<td>na</td>
<td>-</td>
<td>TC152755</td>
</tr>
<tr>
<td>POAC664TV</td>
<td>0.549</td>
<td>NP_191747</td>
<td>Cytochrome P450</td>
<td>TC154689</td>
</tr>
<tr>
<td>MICRO.7275.C1</td>
<td>0.518</td>
<td>P21568</td>
<td>Peptidyl-prolyl cis-trans isomerase</td>
<td>TC138212</td>
</tr>
<tr>
<td>MICRO.712.C31</td>
<td>0.567</td>
<td>AAN76811</td>
<td>PEP carboxylase kinase</td>
<td>TC134483</td>
</tr>
<tr>
<td>MICRO.6284.C1</td>
<td>0.545</td>
<td>NP_195300</td>
<td>unknown protein</td>
<td>TC136718</td>
</tr>
<tr>
<td>MICRO.5327.C4</td>
<td>0.530</td>
<td>NP_849715</td>
<td>unknown protein</td>
<td>TC139374</td>
</tr>
<tr>
<td>MICRO.4091.C1</td>
<td>0.498</td>
<td>AAF61863</td>
<td>DNA-binding protein 3</td>
<td>TC151567</td>
</tr>
<tr>
<td>MICRO.3180.C2</td>
<td>0.575</td>
<td>EAY76147</td>
<td>hypothetical protein</td>
<td>TC158148</td>
</tr>
<tr>
<td>MICRO.14933.C4</td>
<td>0.478</td>
<td>na</td>
<td>-</td>
<td>CV499811</td>
</tr>
<tr>
<td>MICRO.14151.C1</td>
<td>0.540</td>
<td>ABL61268</td>
<td>putative zinc transporter</td>
<td>TC133838</td>
</tr>
<tr>
<td>MICRO.13119.C1</td>
<td>0.543</td>
<td>ABE89190</td>
<td>Protein kinase</td>
<td>TC154081</td>
</tr>
<tr>
<td>MICRO.12238.C1</td>
<td>0.803</td>
<td>NP_177557</td>
<td>protein binding</td>
<td>TC160980</td>
</tr>
<tr>
<td>MICRO.11800.C1</td>
<td>0.589</td>
<td>NP_191964</td>
<td>MGDG2</td>
<td>TC142634</td>
</tr>
<tr>
<td>BPLI5I11TH</td>
<td>0.495</td>
<td>AAX83943</td>
<td>Sgt1b</td>
<td>BG590437</td>
</tr>
<tr>
<td>bf_mxlffxxxx_0065f11</td>
<td>0.479</td>
<td>na</td>
<td>-</td>
<td>TC152755</td>
</tr>
<tr>
<td>bf_mxlffxxxx_0027g02</td>
<td>0.495</td>
<td>AAT38751</td>
<td>RNA-directed RNA polymerase</td>
<td>TC150928</td>
</tr>
<tr>
<td>bf_ivrootxx_0061c03</td>
<td>0.547</td>
<td>NP_566159</td>
<td>glycerophosphodiester phosphodiesterase</td>
<td>CO502533</td>
</tr>
<tr>
<td>bf_arrayxxx_0037e12</td>
<td>0.552</td>
<td>ABO81782</td>
<td>Protein kinase</td>
<td>DR034267</td>
</tr>
</tbody>
</table>
Field Test of the Diagnostic Transcriptional Profile

Correctly identified P-deficient plants

Expression of 200 genes did predict P status
A Molecular Diagnostic for Phosphorus Deficiency in Potatoes

Identified promoters for ‘smart’ plant technology

Identified genes differentially regulated by P stress in potato

Improved understanding of plant responses to P stress

Identified genes for a diagnostic transcriptional microarray

Tested the diagnostic in the field

Thank-you for listening
A Molecular Diagnostic for Phosphorus Deficiency in Potatoes

Identified promoters for ‘smart’ plant technology

Identified genes differentially regulated by P stress in potato

Improved understanding of plant responses to P stress

Identified genes for a diagnostic transcriptional microarray

Tested the diagnostic in the field

Thank-you for listening